DATA SHEET

TDA8356

DC-coupled vertical deflection circuit

File under Integrated Circuits, IC02

FEATURES

- Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- Vertical flyback switch
- Guard circuit
- Protection against:
- short-circuit of the output pins (7 and 4)
- short-circuit of the output pins to V_{P}
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- A guard signal in zoom mode.

GENERAL DESCRIPTION

The TDA8356 is a power circuit for use in 90° and 110° colour deflection systems for field frequencies of 50 to 120 Hz . The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
DC supply					
V_{P}	supply voltage	9	4.5	25	V
I_{q}	quiescent supply current	-	30	-	mA
Vertical circuit					
$\mathrm{l}_{\mathrm{O}(\mathrm{p}-\mathrm{p})}$	output current (peak-to-peak value)	-	-	2	A
$I_{\text {diff(} p \text {-p) }}$	differential input current (peak-to-peak value)	-	600	-	$\mu \mathrm{A}$
$V_{\text {diff(}}(p-p)$	differential input voltage (peak-to-peak value)	-	1.5	1.8	V
Flyback switch					
I_{M}	peak output current	-	-	± 1	A
V_{FB}	flyback supply voltage	-	-	50	V
Thermal data (in accordance with IEC 747-1)					
$\mathrm{T}_{\text {stg }}$	storage temperature	-55	-	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-25	-	+75	${ }^{\circ} \mathrm{C}$
T_{vj}	virtual junction temperature	-	-	150	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8356	SIL9P	plastic single-in-line power package; 9 leads	SOT131-2

BLOCK DIAGRAM

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
$I_{\text {drive(pos) }}$	1	input power-stage (positive); includes $\mathrm{I}_{\text {I(sb) }}$ signal bias
$\mathrm{I}_{\text {drive(neg) }}$	2	input power-stage (negative); includes $\mathrm{I}_{\text {I(sb) }}$ signal bias
V_{P}	3	operating supply voltage
$\mathrm{V}_{\mathrm{O}(\mathrm{B})}$	4	output voltage B
GND	5	ground
V_{FB}	6	input flyback supply voltage
$\mathrm{V}_{\mathrm{O}(\mathrm{A})}$	7	output voltage A
$\mathrm{V}_{\mathrm{O}(\text { guard }}$	8	guard output voltage
$\mathrm{V}_{\text {Ifb) }}$	9	input feedback voltage

Metal block connected to substrate pin 5.
Metal on back.
Fig. 2 Pin configuration.

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor $\left(R_{M}\right)$ connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. The input circuit has been adapted to enable it to be used with the TDA9150, TDA9151B, TDA9160A, TDA9162, TDA8366 and TDA8376 which deliver symmetrical current signals. An external resistor ($\mathrm{R}_{\mathrm{CON}}$) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and the output current is defined by: $I_{\text {diff }} \times R_{\text {CON }}=I_{\text {coil }} \times R_{M}$. The output current is adjustable from $0.5 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ to $2 \mathrm{~A}(p-p)$ by varying R_{M}. The maximum input differential voltage is 1.8 V . In the application it is recommended that $\mathrm{V}_{\text {diff }}=1.5 \mathrm{~V}$ (typ). This is recommended because of the spread of input current and the spread in the value of $\mathrm{R}_{\mathrm{CON}}$.
The flyback voltage is determined by an additional supply voltage V_{FB}. The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_{P} optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to V_{P}.

A guard circuit $\mathrm{V}_{\mathrm{O} \text { (guard) }}$ is provided. The guard circuit is activated at the following conditions:

- during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to V_{P} or ground
- during open loop
- when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply					
V_{P}	supply voltage	non-operating	-	40	V
			-	25	V
V_{FB}	flyback supply voltage		-	50	V
Vertical circuit					
$\mathrm{I}_{(\text {(p-p) }}$	output current (peak-to-peak value)	note 1	-	2	A
$\mathrm{V}_{\mathrm{O}(\mathrm{A})}$	output voltage (pin 7)		-	52	V
Flyback switch					
I_{M}	peak output current		-	± 1.5	A
Thermal data (in accordance with IEC 747-1)					
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-25	+75	${ }^{\circ} \mathrm{C}$
T_{vj}	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {th } \mathrm{vj-c}}$	resistance v_{j}-case		-	4	K/W
$\mathrm{R}_{\text {th } \mathrm{j} j-\mathrm{a}}$	resistance v_{j}-ambient in free air		-	40	K/W
t_{sc}	short-circuiting time	note 2	-	1	hr

Notes

1. I I maximum determined by current protection.
2. Up to $V_{P}=18 \mathrm{~V}$.

CHARACTERISTICS

$V_{P}=14.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{FB}}=45 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}}=50 \mathrm{~Hz} ; \mathrm{I}_{(\mathrm{sb})}=400 \mu \mathrm{~A}$; measured in test circuit of Fig.3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supply						
V_{P}	operating supply voltage		9.0	4.5	25	V
V_{FB}	flyback supply voltage		V_{P}	-	50	V
I_{P}	supply current	no signal; no load	-	30	55	mA
Vertical circuit						
V_{O}	output voltage swing (scan)	$\begin{array}{\|l} \hline \mathrm{I}_{\text {diff }}=0.6 \mathrm{~mA}(p-p) ; \\ \mathrm{V}_{\text {diff }}=1.8 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\ \mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}(\mathrm{p-p}) \\ \hline \end{array}$	13.2	-	-	V
LE	linearity error	$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}(\mathrm{p}-\mathrm{p})$; note 1	-	1	4	\%
		$\mathrm{l}_{\mathrm{O}}=50 \mathrm{~mA}(\mathrm{p}-\mathrm{p})$; note 1	-	1	4	\%
V_{O}	output voltage swing (flyback) $V_{O(A)}-V_{O(B)}$	$\begin{aligned} & \mathrm{I}_{\text {diff }}=0.3 \mathrm{~mA} ; \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}(\mathrm{M}) \end{aligned}$	-	40	-	V
V_{DF}	forward voltage of the internal efficiency diode ($\mathrm{V}_{\mathrm{O}(\mathrm{A})}$ - V_{FB})	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~A}(\mathrm{M}) ; \\ & \mathrm{I}_{\text {diff }}=0.3 \mathrm{~mA} \end{aligned}$	-	-	1.5	V
\| ${ }_{\text {os }}$ \|	output offset current	$\begin{aligned} & I_{\text {diff }}=0 ; \\ & I_{(\mathrm{sb})}=50 \text { to } 500 \mu \mathrm{~A} \end{aligned}$	-	-	40	mA
$\left\|\mathrm{V}_{\text {os }}\right\|$	offset voltage at the input of the feedback amplifier $\left(\mathrm{V}_{\mathrm{l} \text { (fb) }}-\mathrm{V}_{\mathrm{O}(\mathrm{B})}\right)$	$\begin{aligned} & \mathrm{I}_{\text {diff }}=0 ; \\ & \mathrm{I}_{(\text {(sb })}=50 \text { to } 500 \mu \mathrm{~A} \\ & \hline \end{aligned}$	-	-	24	mV
$\Delta \mathrm{V}_{\text {os }} \mathrm{T}$	output offset voltage as a function of temperature	$\mathrm{I}_{\text {diff }}=0$	-	-	72	$\mu \mathrm{V} / \mathrm{K}$
$\mathrm{V}_{\mathrm{O}(\mathrm{A})}$	DC output voltage	$\mathrm{I}_{\text {diff }}=0 ;$ note 2	-	6.5	-	V
G_{vo}	open-loop voltage gain ($\left.\mathrm{V}_{7-4} / \mathrm{V}_{1-2}\right)$	notes 3 and 4	-	80	-	dB
	open loop voltage gain $\left(V_{7-4} / V_{9-4} ; V_{1-2}=0\right)$	note 3	-	80	-	dB
V_{R}	voltage ratio $\mathrm{V}_{1-2} / \mathrm{V}_{9-4}$		-	0	-	dB
$\mathrm{f}_{\text {res }}$	frequency response (-3 dB)	open loop; note 5	-	40	-	Hz
G_{1}	current gain ($\mathrm{l}_{\mathrm{o}} / \mathrm{ldifif}^{\text {) }}$		-	5000	$-$	
$\Delta \mathrm{G}_{\mathrm{c}} \mathrm{T}$	current gain drift as a function of temperature		-	-	10^{-4}	K
$I_{1(\text { sb) }}$	signal bias current		50	400	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FB }}$	flyback supply current	during scan	-	-	100	$\mu \mathrm{A}$
PSRR	power supply ripple rejection	note 6	-	80	-	dB
$\mathrm{V}_{1(\mathrm{DC})}$	DC input voltage		-	2.7	-	V
$\mathrm{V}_{\text {I(CM) }}$	common mode input voltage	$\mathrm{I}_{(\text {(sb) }}=0$	0	-	1.6	V
$\mathrm{I}_{\text {bias }}$	input bias current	$\mathrm{I}_{(\text {(sb) })}=0$	-	0.1	0.5	$\mu \mathrm{A}$
$\mathrm{IO}_{\mathrm{O}} \mathrm{CM}$)	common mode output current	$\begin{aligned} & \Delta \mathrm{I}_{(\text {sb })}=300 \mu \mathrm{~A}(\mathrm{p}-\mathrm{p}) ; \\ & \mathrm{f}_{\mathrm{i}}=50 \mathrm{~Hz} ; \mathrm{I}_{\text {diff }}=0 \end{aligned}$	-	0.2	-	mA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Guard circuit						
l_{0}	output current	not active; $\mathrm{V}_{\mathrm{O} \text { (guard) }}=0 \mathrm{~V}$	-	-	50	$\mu \mathrm{A}$
		active; $\mathrm{V}_{\mathrm{O}(\text { guard })}=4.5 \mathrm{~V}$	1	-	2.5	mA
$\mathrm{V}_{\text {O(guard) }}$	output voltage on pin 8	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$	-	-	5.5	V
	allowable voltage on pin 8	maximum leakage current $=10 \mu \mathrm{~A}$;	-	-	40	V

Notes

1. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows:
Divide the output signal $\mathrm{I}_{4}-\mathrm{I}_{7}\left(\mathrm{~V}_{\mathrm{RM}}\right)$ into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and not adjacent blocks (NAB) are given below
LEAB $=\frac{\mathrm{a}_{\mathrm{k}}-\mathrm{a}_{(\mathrm{k}+1)}}{\mathrm{a}_{\mathrm{avg}}} ; N A B=\frac{\mathrm{a}_{\text {max }}-\mathrm{a}_{\text {min }}}{\mathrm{a}_{\mathrm{avg}}}$
2. Related to V_{P}.
3. V values within formulae, relate to voltages at or between relative pin numbers, i.e. $\mathrm{V}_{7-4} / \mathrm{V}_{1-2}=$ voltage value across pins 7 and 4 divided by voltage value across pins 1 and 2.
4. $\mathrm{V}_{9-4} \mathrm{AC}$ short-circuited.
5. Frequency response $\mathrm{V}_{7-4} / \mathrm{V}_{9-4}$ is equal to frequency response $\mathrm{V}_{7-4} / \mathrm{V}_{1-2}$.
6. At $\mathrm{V}_{\text {(ripple) }}=500 \mathrm{mV}$ eff; measured across $\mathrm{R}_{\mathrm{M}} ; \mathrm{f}_{\mathrm{i}}=50 \mathrm{~Hz}$.

Fig. 3 Test diagram.

Fig. 4 Input currents.

APPLICATION INFORMATION

$\mathrm{V}_{\mathrm{P}}=13.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}(\mathrm{p}-\mathrm{p})}=1.87 \mathrm{~A} ; \mathrm{I}_{(\mathrm{sb})}=400 \mu \mathrm{~A} ; \mathrm{I}_{\text {diff(p-p) }}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{FB}}=42 \mathrm{~V} ; \mathrm{t}_{\mathrm{FB}}=0.6 \mathrm{~ms}$.
Fig. 5 Application diagram.

PACKAGE OUTLINE

Dimensions in mm.
Fig. 6 Plastic single-in-line power package; 9 leads (SIL9P; SOT131-2).

SOLDERING

Plastic single in-line packages

BY DIP OR WAVE
The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 s . The total contact time of successive solder waves must not exceed 5 s .

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the
specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply the soldering iron below the seating plane (or not more than 2 mm above it. If its temperature is below $300^{\circ} \mathrm{C}$, it must not be in contact for more than 10 s ; if between 300 and $400^{\circ} \mathrm{C}$, for not more than 5 s .

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: IEROD, Av. Juramento 1992-14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050,5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788399
Brazil: Rua do Rocio 220-5 th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 1063 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, Bombay 400018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS SEMICONDUCTORS S.r.I., Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 67522557
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 4243
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319.
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors LTD., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)730-5000, Fax. (081)754-8421
United States:811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,

Telex 35000 phtcnl, Fax. +31-40-724825
SCD36 © Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

533061/1500/01/pp12
Date of release: January 1995
Document order number: 939774500011

